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Abstract. A correspondence and camera error analysis for dense correspon-
dence applications such as structure from motion is introduced. This provides
error introspection, opening up the possibility of adaptively and progressively ap-
plying more expensive correspondence and camera parameter estimation methods
to reduce these errors. The presented algorithm evaluates the given correspon-
dences and camera parameters based on an error generated through simple trian-
gulation. This triangulation is based on the given dense, non-epipolar constraint,
correspondences and estimated camera parameters. This provides an error map
without requiring any information about the perfect solution or making assump-
tions about the scene. The resulting error is a combination of correspondence and
camera parameter errors. An simple, fast low/high pass filter error factorization is
introduced, allowing for the separation of correspondence error and camera error.
Further analysis of the resulting error maps is applied to allow efficient iterative
improvement of correspondences and cameras.

1 Introduction

The main challenges in tracking, structure from motion and other applications that make
use of dense correspondences are attributable to faulty correspondences and the esti-
mated camera parameters. These challenges result from different lighting conditions,
occlusions, and moving objects within the scene, which introduce uncertainty to the
correspondence algorithm. This makes it desirable to be able to iteratively improve
these correspondences based on an error metric. To the knowledge of the authors there
has been no work evaluating correspondences and camera pose without knowledge of
the ground truth. This paper introduces a novel, simple error evaluation based on the
triangulation error, without ground truth knowledge.
The usual approach for epipolar-constrained applications is based on the following
steps: (1) Find a small number of reliable correspondences between the two images.
(2) Estimate camera poses with calculated correspondences. (3) Calculate dense corre-
spondences and scene structure with the help of epipolar constraints.
This project does it by calculating general dense, non epipolar-constrained correspon-
dences and the camera pose estimation from a subset of these correspondences. Based
on these two steps, this paper introduces an error metric based on a 3D geometric error.
The main contribution of this paper is the factorization of the error into the two main er-
ror sources, the camera parameter error and the correspondence error. This error metric
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opens up the possibility of automatically performing feedback on both correspondence
and camera parameter calculation given a general, non epipolar-constrained, dense cor-
respondence algorithm. While this is not the paper that introduces such a feedback loop,
it lays the fundamentals for it.
Further analysis of the extracted errors is performed to allow a quantitative error eval-
uation. This analysis allows a more systematic decision in which previous steps, corre-
spondence calculation or camera parameter estimation, need further exploration.
The approach presented in this project was chosen because of improvements in hi-
erachical dense correspondence algorithms, which allows efficient general correspon-
dence calculation without knowledge of epipolar geometry. The main reason for this
approach is the potential to incrementally improve the correspondences and camera
poses by the proposed feedback loop. This is possible because correspondence errors
for non-epipolar constraint dense correspondences are independent of the epipolar map-
ping. The freedom in unconstrained correspondence calculation allows the introduction
of geometrical error extraction. By the knowledge of the authors this is the first time that
an error factorization for correspondence and camera error in dense correspondence al-
gorithms is possible.

2 Previous Work

Image registration, establishing the correspondence between two images, is a major step
towards extracting model geometry. There are different approaches to evaluate pixels in
two images representing the same object. Harris and Stephens [1] introduced a motion
analysis algorithm based on corners and edges. This approach is only suitable for image
motion analysis where objects of interest have to be tracked. Other approaches base the
correspondence search on epipolar constraints as shown in [2]. To exploit the epipolar
constraints the camera poses have to be known in advance or have to be calculated with
a subset of reliable correspondences. The algorithm used in this project is based on
dense, non-epipolar constraint correspondences. Due to this constraint a direct method
solving correspondences coarse-to-fine on 4-8 mesh image pyramids, with a 5x5 local
affine motion model as outlined by Duchaineau et al. [3] has been introduced. The al-
gorithm guarantees that every destination pixel is used only once and, if possible, every
pixel gets a correspondence pixel in the destination frame. All the correspondences are
calculated without any knowlegde of the camera pose or epipolar constraints. This leads
to a very flexible but still reliable correspondence calculation, which fits our newly pro-
posed iterative correspondence calculation.
The camera pose estimation from two corresponding images has been extensively stud-
ied in Computer Vision. Hartley [4] introduced the eight-point algorithm that requires
at least eight correspondences to evaluate the relative poses of the cameras. Nistér in-
troduced a five-point algorithm in [5]. According to the literature, this algorithm is
considered to be more robust than the eight-point algorithm. The five-point algorithm,
embeded in RANSAC [6] is used in this project.
The fundamental question is how to quantify the quality of correspondences and calcu-
lated camera pose. There has been a vast amount of work in the stereo vision community
in error and quality analysis for correspondence and camera pose estimation algorithms.
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Fig. 1. Triangulation based on camera pose and correspondences. Error metric is defined
by d. Resulting Error Maps: Total Error (left), Camera Error (middle), Correspondence
Error (right). All error maps are normalized.

Rodehorst et al. [7] introduced an approach to evaluate camera pose estimation based
on ground truth data. For correspondence evaluation Seitz et al. [8] introduced a com-
parison and evaluation platform for reconstructions from stereo, termed the Middlebury
Stereo Evaluation. This approach is based on reconstructing scenes that are known ex-
actly and comparing the reconstructions against the ground truth data. Mayoral et al. [9]
introduced an approach to evaluate the best matching algorithm by introducing a dispar-
ity space image based on matching errors. Xiong and Matthies [10] analyse and correct
major error sources, based on matching errors, for a certain scene type, in this case a
cross country navigation of an autonomous vehicle. All these approaches are based on
matching errors in epipolar-constrained correspondence algorithms. To the knowledge
of the authors there is no work covering error analysis for correspondences and camera
pose at the same time. This paper on the other hand presents a novel technique based
on non-epipolar constrained correspondences and a geometric error extraction to eval-
uate correspondence and camera errors on the fly, without the prerequisite of ground
truth data or assumptions about the scene, and lays the fundamentals for an iterative
correspondence and camera pose improvement.

3 Factorization of Correspondence and Camera Pose Errors

The error factorization is based on two preceding steps not further covered in this pa-
per, the general dense correspondence calculation and the camera pose estimation. The
main achievement of this paper is the introduction of a measure for correspondence and
camera quality without knowledge of the perfect solution, any information, or assump-
tion of the scene. This opens the way for automatic iterative correspondence and camera
pose calculation.
The error metric is based on triangulation. The basic idea is to intersect rays coming
from both cameras which go through corresponding pixels. In order to calculate the
direction of these rays we have to take the extrinsic and intrinsic parameters of the cam-
eras into consideration. The camera pose is defined by R, the camera rotation, and T ,
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Fig. 2. Aerial source images (left, middle) and the resulting triangulation from a differ-
ent view point(right).

the camera translation, which are given through camera pose estimation. The intrinsic
parameters K are given through a one time calibration of the cameras. With these pa-
rameters and the correspondences the ray directions DA and DB can be calculated; x
and y are defined as the pixel coordinates in the base image or the corresponding pixel
in the destination image.

Di = Ri ∗K−1
i ∗

x
y
1

 (1)

Having the directions of the rays calculated and knowing the start points TA and TB ,
which are based on camera pose estimation, the shortest distance between the two rays
can be calculated. The points PA and PB on the rays that correspond to the nearest
distance points on the rays are defined in the following equations, where tA and tB
define how far in the given direction the points PA and PB are from the camera locations
TA and TB .

PA = TA + tA ∗DA (2)
PB = TB + tB ∗DB (3)

Knowing PA and PB the length of the shortest distance between the two rays is defined
by d. In general these rays will not intersect because of noise and errors in the camera
pose and the correspondences. Based on this knowledge the length of the nearest dis-
tance between the two rays is introduced as the error metric d. Figure 1 illustrates the
error calculation. The error is considered to be directional for further calculations. In
order to get a direction, the cross product of the two direction rays is evaluated and the
resulting vector direction is considered to be the positive direction.
This error calculation is performed for every given correspondence pair across the pair
of images. Figure 1 shows the resulting error map on the left. This map consists of a
smooth global error superimposed by high frequency errors. Knowing that the main er-
ror sources are the camera parameters and the correspondences it can be said that the
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camera parameters would have to introduce a smooth overall error and the correspon-
dences have a local high frequency error. A closer look at error d results in equations
(4) and (5) respectively for PA and PB . For this analysis the calculations are done in the
coordinate system of camera A. This means that the rotation and translation between
camera A and B are relative.

PA = tAK−1
EA

x + xEd

y + yEd

1

 (4)

PB = REtBK−1
EB

xc + xEd
+ xEc

yc + yEd
+ yEc

1

 + TE (5)

Camera parameter errors consist of error in relative rotation RE , relative translation TE ,
the intrinsic errors KEA

and KEB
, and the radial distortion errors xEd

and yEd
. The

errors introduced by the inaccuracies in correspondence calculation are represented by
xEc

and yEc
. All errors introduced by the camera parameters are global and influence

the reconstruction in a smooth manner, resulting in the smooth parts of the total error
map. The correspondence errors on the other side are local and therefore result in high
frequency errors in the error map. To separate the two error sources from each other
the camera error is first estimated. The error map shown in Figure 1 shows the absolute
values of the error. The direction of the error is taken into account as it is possible that
the crossing rays change their spatial order. This can be seen in the upper right corner
of the total error map in Figure 1. The black circle corresponds to an area where the
sign of the error changes.
To extract the camera error, a least-square B-spline approximation to the total error
height field is introduced. This approximation consists of a 5x5 support point grid and
is a special case called Bézier Curve. The goal is to filter the smooth camera error out.
The correspondence error is defined as the difference between the total error and the
camera error. The resulting smooth camera error can be seen in Figure 1 in the middle.
The correspondence error can now be calculated by subtracting the camera error from
the total error in each pixel. Figure 1 shows the correspondence error (on the right)
based on the image pair in Figure 2. The latter figure shows the triangluation based on
the given correspondences and the calculated camera pose. In areas of high error in the
correspondence error map the resulting reconstruction shows artifacts. Also the camera
error map represents the smooth reconstruction displacements seen in the upper right
corner of the reconstruction. This error is produced by internal and external errors of
the camera.

4 Error Metric Analysis

4.1 Signal-to-noise ratio (SNR) analysis

As discussed in the previous section, the camera error is modeled as a deterministic
function. Correspondence error, on the other hand, appears to be more like ‘noise’, due
to its high-frequency and non-deterministic nature. Thus, a convenient way to examine
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Fig. 3. Source images (left pair), 3D reconstruction with calculated camera pose and
correspondences (middle) / perfect camera pose and perfect correspondences (right).

their relationship is by applying the signal-to-noise ratio (SNR) concept, which is com-
monly used in image and signal processing. It must be mentioned that the two errors are
assumed to be independent, since only an inlier subset of the correspondences chosen
by RANSAC are used to compute the camera pose, which are not necessarily repre-
sentative of the entire set of correspondences. It is also important to take into account
that correspondence error is a signal in itself, despite its treatment as noise here for our
purposes. Thus, a range of low SNR values, uncommon in normal signal and processing
applications, is permissive here, whenever the influence of camera error is less than that
of the correspondence error. Our formulation fo the SNR is given by eq. 6, where µs

and µn are respectively the average camera and correspondence errors, while σn is the
standard deviation of the correspondence error.

SNR =
µs − µn

σn
(6)

A high SNR indicates numerically that the camera error is dominant, and that some
algorithm should be applied to overcome this deficiency. On the other hand a SNR
smaller than one suggests that the correspondences are the main error source and that
the main focus should be on global or local correspondence improvement.

5 Results

In this section the results of the presented approach are discussed and evaluated by
using different data sets to show the flexibility of the approach. These tests have been
conducted on a machine with Quad Core CPU @2.66 Mhz and 4 GB of RAM. All
results were achieved in a few seconds depending on the size of the input images.

5.1 Aerial Imagery

The first data set consists of aerial images taken from different viewing angles of a
downtown district. Figure 2 shows the image pair and resulting reconstruction. Figure 1
displays the error maps resulting from the introduced approach. It can be concluded
that the largest correspondence errors appear in occlusion areas and in areas where
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Fig. 4. Left pair: Calculated camera pose/perfect correspondences: camera error
(left)/correspondence error (right). Right pair: Perfect camera pose/calculated corre-
spondences: total error (left)/correspondence error (right).

Fig. 5. Estimated camera pose and calculated correspondences. Total error map (left),
correspondence error map (middle) and ground truth correspondence error map (right).

there is not enough texture for the correspondence algorithm to lock down the best
correspondences. There are also high errors on the reconstruction of the static scene,
such as the streets, where movers appear. The problem is that these objects move from
one frame to the other and therefore the correspondences are incorrect. These results
demonstrate that problem areas are found by the introduced correspondence error map.

5.2 Artificial Data

Further tests have been completed with artificial data, where the perfect camera posi-
tions and correspondences are known. Figure 3 shows the used camera views and the
resulting triangulation with calculated and perfect correspondences. The goal of this
test is to prove that the assumption of the smooth camera error is correct and that the
extraction of correspondence errors results in a reliable error map. The algorithm was
run with the perfect camera pose and the calculated correspondences. The resulting cor-
respondence error map can be seen in Figure 4 on the right. This error map illustrates
that the main errors in the correspondences are around occlusions and repetitive tex-
tures on the cylinders. Considering that we have perfect camera poses the camera error
is very small overall, which is supported by the resulting SNR of -0.77. This explains
the similarity of the total error map and the correspondence error map. Figure 5 shows
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Fig. 6. Middlebury data set. Base camera view (left), depth map extracted after recon-
struction (middle) and Correspondence Error Map (right).

the extracted error maps with calculated camera poses and calculated correspondences.
This demonstrates that the resulting correspondence error map (middle) is up to nor-
malization just like the one with the perfect camera poses. This shows that the assumed
interaction of camera error and correspondence error is correct. In this case the SNR
result is 28.31 which implies that the camera error is dominant.
The next test has been conducted to prove that in case of perfect correspondences the
total error corresponds to the camera error. Figure 4 shows the results of this test (left).
It can be seen that the camera error represents the entire error. The SNR of value 292.96
implies that all the error is in the camera and correspondence errors are negligable. This
fulfills the assumed error relation.
A ground truth correspondence error map is introduced to support the extracted corre-
spondence error map. The ground truth correspondence error is given by the distance
of the two 3D points based on the perfect camera pose and the perfect correspondences
or calculated correspondences respectively. In areas of occlusions no ground truth data
can be produced as no perfect correspondences exist. Figure 5 shows that the error ar-
eas in the ground truth (right) and the calculated correspondence error (middle) maps
are similar up to scale. By taking into account that the error estimation is done without
knowledge about the scene it can be said that the results are conclusive.
The introduced approach has additionally been tested with the ‘Rocks2’ data set from
the Middlebury Stereo Evaluation data sets [11]. The resulting correspondence error
map can be seen in Figure 6. The comparison of extracted depth map, input image
and the correpondence error map shows that problem areas for the correspondences are
detected.

5.3 Signal-to-noise ratio

The SNR based on the error maps gives information about the relative importance rela-
tion between camera and correspondence errors. To underline the benefit of this analy-
sis, tests with the artifical data were conducted. The results in table 1 show the changes
in SNR, based on different camera poses and correspondences. The correspondences are
reduced in quality from left to right. In the calculated correspondences the number of
iterations the algorithm runs are restricted to get different correspondence qualities. For
testing purposes the camera poses are optimized based on bundle adjustment (BA) [12].
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SNR Perfect Calculated (5x) Calculated (1x)
Perfect 6.69695 -0.789583 -0.770614
Calculated (BA) 278.659 28.5515 27.3323
Calculated 292.969 30.4882 28.3113

Table 1. SNR values based on different camera poses (vertical) and different correspon-
dences (horizontal).

It can be seen that the better the camera poses get, the lower the SNR is. The worse the
correspondences are, the lower the SNR is too. The SNR gives us a measure to estimate
which error sources are relatively more dominant. A SNR of approximately one implies
that both errors have about the same influence. The SNR value for perfect camera pose
and perfect correspondences results because the intrinsic parameters in this data set are
not perfect, which shows in the camera error map. These tests were run with all the used
data sets and the results comply.
At this point a simple feedback loop can be introduced. An initial camera pose based
on dense correspondence calculation is calculated and the resulting SNR is 28.31. This
implies that the camera pose is the dominant error source. By using BA the extrinsic
parameters can be improved, which shows in the smaller SNR value 27.33. Despite the
correction the camera error is still dominant, which implies that most of the remaining
camera error is based on internal camera parameters and distortion. To improve this,
further parameters could be added to the camera refinement. On the other side a simple
global correspondence improvement would be to run the correspondence algorithm with
more iterations. This leads to a higher SNR, which implies that the correspondences get
globally relatively better. A more advanced way to improve correspondences would be
to use the correspondence error map to locally improve bad correspondences with more
expensive fitting algorithms. This discussion shows the proof of concept for an itera-
tive correspondence and camera pose estimation algorithm, based on error analysis and
separation, though this is out of the scope of this particular paper.

5.4 Zero crossings

A closer look at the correspondence error map reveals thin lines of ‘no-error’ inbetween
high error regions. The same regions in the total error map reveal that this occurs where
total error changes from being smaller to being bigger than the estimated camera er-
ror. This is a result of the taken assumptions as we try to calculate the error without
comparison to the perfect solution. This artifact is acceptable as it is only a small part
of the error and only introduces false positives. Used in an iterative correspondence
calculation algorithm these areas will show up as errors in the next iterations.

6 Conclusion

This paper introduces an automated correspondence and camera error metric based on
triangulation for general, non-epipolar constrained, dense correspondence applications.
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The goal of this error metric is to find faulty camera poses and correspondences and
lay foundation for feedback to allow updates with more sophisticated and expensive
algorithms. To solve for this error metric a triangulation based on correspondences and
camera poses is executed. The length of the nearest distance between the resulting tri-
angulation rays is used as the error for this approach. Based on the assumption that
the error introduced by the camera is smooth over an image the camera error can be
extracted with a least squares B-spline approximation of the total error. The correspon-
dence error, which is considered to be local and represented by high frequency errors is
the difference between camera error and total error. Further SNR analysis of the errors
reveals if correspondence or camera parameter errors are dominant and helps to itera-
tively improve the weaker link. An overall test demonstrates the usefulness of the SNR
value towards identifying which source of error is relatively dominant, and in case it is
the correspondence error the problem areas identified are consistent with ground-truth
error maps, such that posterior local corrections can be applied in only these regions.
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